

The new Inner Tracking System of the ALICE experiment

Paolo Martinengo - CERN

on behalf of the ALICE Collaboration

Chicago, 7-11 February 2017

The new ALICE Inner Tracking System

OUTLINE

- Motivations and Experimental Strategy
- Design Objectives and Layout
- Selected topics from the R&D
- Construction and Integration Schedule
- Conclusions

ALICE Upgrade – From observation to precision measurement

In March 2013 a new physics programme for ALICE was approved

Physics Goal → high-precision measurements of QGP properties

- Open HF (charm & beauty, mesons & baryons), Quarkonia down to zero p_{T}
 - thermalisation, hadronization, recombination, temperature evolution of the QGP
- Vector mesons and low-mass di-leptons
 - chiral symmetry restoration, virtual thermal photons
- High-precision measurement of light (anti-)nuclei and hyper-nuclei
 - nucleosynthesis, exotics
- and more

ALICE Upgrade Lol March 2013

ALICE Upgrade – From observation to precision measurement

Main requirements for the new Inner Tracking System:

- High tracking efficiency and resolution at low p_T (60% @ 100 MeV/c) Increase granularity, reduce material thickness
- Excellent secondary vertex resolution (Λ_c C τ ~60 μ m) Move closer to Interaction Point (IP), new beam pipe, smaller diameter
- High-statistics, un-triggered data sample (>10 nb⁻¹ Pb-Pb)
 Increase readout rate, reduce data size (online data reduction)

TDR
March 2014

New ITS Design Objectives

- 1. Improve impact parameter resolution by a factor of 3 (5) in r φ (z) @ p_T = 500 MeV/c ALICE
- Get closer to IP (position of first layer): 39 mm →23 mm
- Reduce x/X₀ /layer: ~1.14% → ~ 0.3% (for the 3 innermost layers)
- Spatial resolution: currently 12 μm x 100 μm (SPD) → 5 μm x 5 μm
- 2. Improve tracking efficiency and p_T resolution at low p_T
- Increase granularity:
 - 6 layers → 7 layers
 - silicon pixel, drift and strip → all-pixels
- 3. Exploit LHC luminosity increase > fast readout
- readout Pb-Pb interactions up to 100 kHz, i.e. 2 x expected peak luminosity after LS2 (currently limited at 1kHz)
- 4. Withstand radiation load (10 years operation):
- TID: \sim 270 krad, NIEL: \sim 1.7x10¹² 1MeV n_{eq} / cm²
- 5. Reliability **>** fast insertion/removal for yearly maintenance
- possibility to access faulty components during yearly shutdown
- ⇒ Services (power, cooling, R/O) connected only on one side

Layout of the new ITS

Beam pipe

7-layer barrel geometry,

fully equipped (~24000 chips) with dedicated MAPS:

ALice Pixel DEtector (ALPIDE)

Inner layers

r-coverage: 23 – 400 mm

η coverage: $|η| \le 1.3$

Monolithic Active Pixel Sensors

Material /layer : $0.3\% X_0$ (IB), $1\% X_0$ (OB)

12.5 G-pixel camera (~10 m² active Si) Binary read-out

Performance of new ITS (MC simulations)

Cellular automaton → poster by Maximiliano Puccio

Impact parameter resolution

ALICE Simulation ALICE Simulation Output Cellular Automaton Tracker (ITS Upgrade) Pb-Pb data (2011) Fast MonteCarlo (ITS Upgrade) 10 $p_{\rm T}$ (GeV/c) 40 µm at $p_{\rm T}$ = 500 MeV/c

Tracking efficiency (ITS standalone)

Physics performance with the new ITS (MonteCarlo)

B[±] not accessible with the present ITS

Measure energy loss for b, quantitative verification of $\Delta E_c > \Delta E_b vs. p_T$

ALI-SIMUL-96115

Physics performance with the new ITS (MonteCarlo)

$\Lambda_{\rm C}$ not accessible (in Pb-Pb) with the present ITS v_2 measurement possible with the new one

Large improvement also for D⁰ & D_s signals, possibility to discriminate between thermal and coalescence hadronization models

R&D

Huge R&D effort started 6 years ago

- Simulation
- Pixel sensor, connectivity
- Cooling, power distribution
- Read-out chain
- Assembly tools & procedure
- Construction database
- Mechanical support (carbon fiber)
- Integration in ALICE
- and more

First prototype usually does not meet all requirements

ALPIDE – Technology and Pixel Layout

Pixel Sensor using TowerJazz 0.18 μm CMOS Imaging Process

ALPIDE – Final Version

Production started Dec 2016, to be completed by Dec 2017

Pad-over-matrix

Inner Barrel: 50 μm thick Outer Barrel: 100 μm thick

Key features:

Dimensions: 30 mm x 15 mm

Pixel pitch: 29 μm x 27 μm

High speed serial data output (HSO)

• OB: 400 Mbit/s

• IB: 600 Mbit/s or 1.2 Gbit/s

Ultra-low power (entire chip): ~40 mW/cm², (requirement < 100 mW/cm²) 140 mW full chip

• Triggered acquisition (200 kHz Pb-Pb, 1 MHz pp) or continuous (progr. integration time: $1\mu s - \infty$)

ALPIDE – Detection Efficiency and Fake-Hit Rate

- Big operational margin with only 10 masked pixels (0.002%), fake-hit rate $< 10^{-10}$ pixel/event (requirement 10^{-6})
- Chip-to-chip fluctuations negligible
- Non-irradiated and NIEL/TID chips show similar performance
- Sufficient operational margin after 10x lifetime NIEL dose

Availability and excellent support from test beam facilities all around the world (BTF Frascati, CERN, DESY, Pohang/Korea, SLRI/Thailand) has been a key factor for the success of the development of the chip

ALPIDE – Resolution and cluster size

- Chip-to-chip fluctuations negligible
- Non-irradiated and TID/NIEL chips show similar performance
- Resolution of about 5μm at a threshold of 200 electrons
- Sufficient operational margin even after 10x lifetime NIEL dose

Detector Barrel Staves

Stave Layout

9 chips, stave length ~450 mm

Hybrid Integrated Circuits (HIC) and Stave Prototypes

Prototype series of Inner Barrel and Outer Barrel HICs Staves with pALPIDE-3

- Characterization with different modes of operation, readout rates and environmental conditions (power supply and temperature)
- Sensor performance comparable to standalone chip
- Pre-series production with ALPIDE chips starting now

INNER BARREL

X-ray (55Fe) image of IB HIC (radiography of 3 sensors)

Outer Barrel HIC - threshold measurements

Chip series test and Hybrid Integrated Circuit (HIC) assembly

ALICE

Machines installed at production sites, training started

ALICIA (IBS)
6 machines (+1 MFT)

(Chip probe testing & HIC assembly)

ALICIA = ALice Integrated Circuit Inspection and Assembly

Korea-YS01 (C-On)

1 machine
(mass chip probe testing)

24000 chips needed

MFT & spares

RUv0 – Readout chain with final ALPIDE verified

ALPIDE will be the only electronics component around the Interaction Point, the off-detector electronics will sit 5 m away

- Communication between detector (ALPIDE) and off-detector electronics via SAMTEC firefly cables
- Distribution of CLK and slow-control at 40MHz
- Data readout at 1.2Gb/s (IB) & 0.4Gb/s (OB)

Eye diagram of signal propagated over 5m-long cable Measured BER (no errors over 14 h) < $1.6 \text{ } 10^{-14}$

Overall ITS Planning (Simplified Global View)

Conclusions

- The new ALICE Inner Tracking System project has successfully completed the R&D phase
- All requirements have been met or even exceeded
- With the start of the production of the ALPIDE sensor a major milestone was achieved
- Production sites are equipped with custom machines for test &assembly
- Detector production will enter full swing during 2017
- The project is well on track for installation starting middle 2020

Posters related to the upgrade

#348, "Performance evaluation of Si PAD detector for the ALICE FoCal development" by Tomoko Sakamoto #454 "Prospects for ALICE physics with the Muon Spectrometer Upgrade and the new MFT" by Antonio Uras #247, "Detector Control System of the new Muon Forward Tracker at ALICE" by Kenta Shigaki #543 "A Cellular Automaton tracking algorithm for the Upgrade of the ITS of ALICE" by Maximiliano Puccio #437, "The new Fast Interaction Trigger detector for the ALICE Upgrade" by Wladyslaw Henryk Trzaska #442, "Forward high granularity electromagnetic calorimeter for direct photon measurements at LHC" by Hongkai Wang

Posters related to the present detectors

#171, "Performance of ALICE EMCal and DCal in Electron Identification" by Erin Frances Gauger **#324, "Space-charge distortions in the ALICE TPC in LHC RUN 2"** by Ernst Hellbar **#474, "Calibration and Performance of EMCal and DCAL Detectors at ALICE"** by Justin Thomas Blair

SPARES

ALICE ITS Upgrade – entirely new, all-pixel detector, after LS2

ALPIDE – Technology and Pixel Layout

ALICE ITS Upgrade

30mm

- Full-scale prototype: 1024 x 512
- 4 sectors with pixels variants
- pixel pitch: 28μm x 28μm
- 1 register/pixel, no final interface

- Optimization of in-pixel and peripheral circuits
- NO high-speed output link (1.2 Gbit/sec replaced by a 40Mb/s)

All final features, including 1.2 Gbit/s data serial output

Chip Final Version

Main changes wrt pALPIDE-3

- Full matrix with same pixel type
- time skew of global signals
- Improved protection against SEUs
- Improvement of PLL → High-speed Serial Output

25

R&D on Pixel Chip to FPC Interconnection – Selective Laser Soldering

Laser soldering: connection of Pixel chip to flexible printed circuit

R&D addressed:

- Geometry of the interconnection
- soldering ball, interface pad and VIA
- laser beam profile and power time profile

All process main issues were solved

More time needed to bring the process to a steady single interconnection yield of ~99.99%

Remains a very promising interconnection technology for future applications

FPC to Chip interconnection – Wire Bonding

Hybrid Integrated Circuits (HIC) and Stave Prototypes

ALICE ITS Upgrade

Stave temperature measurements while powering on stave in two steps

- 1) Power on (with CLK): ~ 80 mW digital + 20 mW analogue / chip
- 2) Activation of high-speed serial output (DTU): ~ 160 mW digital + 20 mW analogue / chip

Inner Barrel Stave Mechanics & Cooling

ALICE ITS Upgrade

Outer Barrel Stave Mechanics & Cooling

ALICE ITS Upgrade

Inner Detector Barrel

ALICE ITS Upgrade

31

Outer Detector Barrel

ALICE ITS Upgrade

Detector Interfaces

ALICE ITS Upgrade

33

Prototype Readout Unit - 2015

- Based on SRAM FPGA (Xilinx Kintex7) +
 GBTx FMC (daughter board)
- Extensive use of radiation mitigation techniques
- Communication with Trigger and DAQ via GBT link validated
- Communication with sensors via highspeed copper serial links validated

Radiation induced fault rates

- Intensive SEU test campaigns :
- MTBF/device: ~2400 hours (10⁹ h/cm²)
- ► MTBF/entire system: ~12 beam hours

 System downtime ~ 10-5

Pixel Chip Requirements

Parameter	Inner Barrel	Outer Barrel	ALPIDE*
Silicon thickness	50μm	100µm	
Spatial resolution	5µm	10µm	∼5µm
Chip dimension	15mm x 30mm		
Power density	< 300mW/cm ²	< 100mW/cm ²	<40mW/cm ²
Event time resolution	< 30µs		<10µs
Detection efficiency	> 99%		
Fake hit rate **	< 10 ⁻⁶ /event/pixel		<<< 10 ⁻⁶ /event/pixel
NIEL radiation tolerance ***	$1.7 \times 10^{13} \text{ 1MeV } n_{eq}/\text{cm}^2$	10 ¹² 1MeV n _{eq} /cm ²	
TID radiation tolerance ***	2.7Mrad	100krad	

^{*} extrapolation of the ALPIDE performance based on prototype results

^{**} revised numbers w.r.t. TDR

^{***} including a safety factor of 10, revised numbers w.r.t. TDR